Lesson 18. Finding an Initial BFS

1 Overview

- Today: How do we find an initial BFS to start the simplex method?
- The Phase I LP: an auxiliary LP based on the original canonical form LP with an easy-to-find initial BFS
- Solve the Phase I LP using the simplex method
- The optimal solution to the Phase I LP will either
\diamond give an initial BFS for the original LP
\diamond prove that the original LP is infeasible

2 Constructing the Phase I LP

1. If necessary, multiply the equality constraints by -1 so that the RHS is nonnegative
2. Add a nonnegative artificial variable to the LHS of each equality constraint (each equality constraint gets its own artificial variable)
3. The objective is to minimize the sum of the artificial variables
4. Compute the initial BFS for the Phase I LP by putting all artificial variables in the basis

Example 1. Construct the Phase I LP from the following canonical form LP.

$$
\begin{array}{lll}
\operatorname{maximize} & 4 x_{1}+5 x_{2}-9 x_{3} & n=3 \\
\text { subject to } & 8 x_{1}-x_{2}+x_{3}=4 & m=2 \tag{*}\\
& x_{1}+4 x_{2}-7 x_{3}=-22 & \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0 &
\end{array}
$$

What is the initial BFS of the Phase I LP?

$$
\begin{aligned}
& \text { Phase I } L P: \min \quad a_{1}+a_{2} \\
& \text { set. } 8 x_{1}-x_{2}+x_{3}+a_{1}=4 \quad m=2 \\
& -x_{1}-4 x_{2}+7 x_{3}+a_{2}=22 \quad n=5 \\
& x_{1}, x_{2}, x_{3}, a_{1}, a_{2} \geqslant 0 \\
& \text { Initial BFS for Phase } I L P: \quad \mathcal{B}=\left\{a_{1}, a_{2}\right\} \\
& \vec{x}^{0}=(\underbrace{0,0,0}_{\text {nonbasic }}, \underbrace{4,22}_{\text {basic }})
\end{aligned}
$$

3 How does the Phase I LP work?

- Let's consider the Phase I LP we wrote in Example 1
- The Phase I LP can't be unbounded, because

$$
a_{1} \geqslant 0, a_{2} \geqslant 0 \Rightarrow a_{1}+a_{2} \geqslant 0
$$

- It can't be infeasible either (we can always compute an initial BFS!)
- Therefore, the Phase I LP must have an optimal solution
- Let $\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, a_{1}^{*}, a_{2}^{*}\right)$ be an optimal BFS to the Phase I LP
- Case 1. The optimal value of the Phase I LP is strictly greater than $0: a_{1}^{*}+a_{2}^{*}>0$

$$
\begin{aligned}
& \Rightarrow \text { Any feasible solution to Phase I } P \text { has } a_{1}+a_{2} \geq a_{1}^{*}+a_{2}^{*}>0 \\
& \Rightarrow \text { In any feasible solution to the Phase I LP, either } a_{1}>0 \text { or } a_{2}>0 \\
& \text { (or both) } \\
& \Rightarrow(*) \text { has no feasible solutions! }
\end{aligned}
$$

- Case 2. The optimal value of the Phase I LP is equal to $0: a_{1}^{*}+a_{2}^{*}=0$

$$
\begin{aligned}
& \Rightarrow a_{1}^{*}=0, a_{2}^{*}=0 \Rightarrow\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}\right) \text { is a feasible solution to (*) } \\
& \left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, a_{1}^{*}, a_{2}^{*}\right) \text { is a BFS to Phase } I \text { LP } \\
& \Rightarrow \text { at least } 5-2=3 \text { of these components must be equal to } 0 \\
& \Rightarrow\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}\right) \text { has at least } 3-2=1 \text { component equal to } 0 \\
& \Rightarrow\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}\right) \text { is a BFS for }(*)
\end{aligned}
$$

- This reasoning applies in general

4 Putting it all together: The Two-Phase Simplex Method

Step 1: Phase I. Construct Phase I LP and compute its easy-to-find initial BFS. Use the simplex method to solve the Phase I LP.

Step 2: Infeasibility. If the optimal value of the Phase I LP is

- $>0 \Rightarrow$ stop; original LP is infeasible.
- $=0 \Rightarrow$ identify initial BFS for original LP.

Step 3: Phase II. Use the simplex method to solve the original LP, using the initial BFS identified in Step 2.

5 Possible outcomes of RPs

- When do we detect if an LP:
is infeasible?
Phase I
is unbounded?
Phase II
has an optimal solution?
Phase II

